
Red Hat, May 2004

■ http://www.gnu.org/software/classpath

■ http://classpath.wildebeest.org/planet/

■ Mark Wielaard
mark@klomp.org
http://www.klomp.org/mark/

Essential classes for the java
programming language

GNU Classpath

2

Overview

■ GNU Classpath Overview

– Motivation & History

– Anatomy of a Java-like system/What is GNU Classpath

– Documentation, Quality assurance, Releases

■ Details/Current state and other projects

– What is in GNU Classpath

– External library/framework projects

– Compilers and Runtimes

■ Where does Red Hat fit in?

■ Demo (and a little tale)

■ The Future

3

Motivation

■ Currently, most free software is written in C

Close to hardware

Fast execution, even
with bad compilers

Large code base,
many libraries

Ubiquitous

The Good

Easy to make bugs

Lacks “modern”
language concepts

(“modern” = 1980’ies)

Hard to write
portable code

The Bad

Libraries not
well integrated

Difficult to learn

The Ugly

4

Motivation

■ Java is a good foundation for many projects

– Type-safety

● Avoids many typical bugs, crashes, security problems

● More opportunities for optimizing compilers

– Modular, object-oriented, concurrent, dynamic

– Easier to write structured, portable code

– Very rich library, reasonably well designed (mostly)

– Large developer base (“COBOL of the 1990’ies”)

● There exist lots of other good (even better?) languages:
Oberon, Eiffel, O’Caml, Haskell, Erlang, TOM, Cedar, ...

● But: They have not many free applications/libraries

5

Motivation

■ But: Java does not solve every problem

– Over-hyped as a solution to everything

– Bad reputation for wasting resources (CPU, RAM)

● It is easy to write inefficient programs

● Early implementations were very slow

● Type-safety and memory management have their cost

– Often over-estimated: Array bounds checking
(→ no buffer overflows) costs ~2% execution time,
avoids ~50% security-related bugs

– Syntax similar to C++ → not very easy to learn

6

■ Java is a compromise

– Not necessarily ideal, but
reasonable

Motivation

— Richard Stallman
 The GNU Manifesto, 1985

“
”

Why GNU Will Be Compatible
with UNIX

Unix is not my ideal system, but
it is not too bad. The essential

features of Unix seem to be good
ones, and I think I can fill in what
Unix lacks without spoiling them.

And a system compatible with Unix
would be convenient for many

other people to adopt.

■ Plenty of free software is being
written in Java

– Sourceforge.net:
11’032 Java projects

7

Motivation

■ Freedom!

– Freedom to use, study, adapt, improve and share

– Freedom to innovate

– Not controlled by any single entity

– Future: Possibility for natural, proven
(vs. committee-dictated) standards

■ Escape the Java Trap!
(Article by Richard Stallman)

8

Anatomy of a traditional java-like system

Java Compiler
Java bytecode

Java Virtual Machine (JVM)
Executes bytecode (for example .jar file)

Run-time services

● Bytecode interpreter
● Just-in-time compiler
● Garbage collection
● Synchronization

Class library

● Data structures
● Networking
● User interface
● Database access

System/Library access — JNI (C calling convention)

9

■ Run-time services

– About 15 JVM projects

● Very diverse goals

● Almost no common code
(yet)

Anatomy of a traditional java-like system

■ Class library

– java.{lang, math, ...},
javax.{mail, crypto, ...}

– Some C code for POSIX-like
systems

2 3

■ Bytecode compiler

– gcj, jikes, kjc, Eclipse, ...

– Complete up to 1.4

● 1.5 will need some work
for generic types: List<A>

1

1

2
3

10

Anatomy of a Java-like system

Ex.: Jikes Compiler
71,000 lines of code
~ 17.5 person-years

~ USD 2.4 Mio.

Java compiler

Ex.: Kissme VM
59,000 lines of code
~ 14.5 person-years

~ USD 2.0 Mio.

Run-time serv.

Ex.: GNU Classpath
233,000 lines of code
~ 61.5 person-years

~ USD 8.3 Mio.

Class library

Very coarse

estimates!

Generated using

http://dwheeler.com/

sloccount/

“Basic COCOMO”

1

2
3

1 2 3

Old Numbers!

11

Ancient History (1998-2000)

■ GNU Classpath was started in 1998 by

– Geoff Berry, Jim Blair, Brian Jones, Paul Fisher,
Aaron Renn and John Keiser

■ Initially designed around Japhar, but planned to be
used with multiple runtimes

■ All before my time

12

Modern History (2000-2004)

■ Merge with libgcj (2000), number of active
developers doubles.

■ More and more runtimes based on GNU Classpath
Mainly research, but some production runtimes

■ Kaffe starts seriously adopting GNU Classpath
(2003), even more active developers and multiple
active branches.

■ I take over maintainership from Brian Jones
(June 2003)

13

■ GNU Classpath is shared
among many projects

– “Upstream” provider
for the core class library

● java.*, most javax.*

● Mainly for historical reasons,
certain javax.* are provided
by other projects

– Common code base,
bug tracking, ...

– Non-trivial applications build
on top of GNU Classpath

GNU Classpath – Present (2004)

Jikes RVM

KaffeJupiter

IKVM.NET

AegisVM

GNU Classpath

. . .JamVM

14

A lot of history - Free software is flexible

■ Done with GNU Classpath:

– Compiling Java source » stand-alone executable

– Compiling Java bytecode » CIL (bytecode of .NET)

– Operating Systems with type-safe kernels

– JVM for multiprocessor clusters (128 CPUs, Myrinet)

– Embedded systems with real-time guarantees

– Alternative access to native system/libs (non-JNI)

Free Software can be adapted
to arbitrary needs → innovation

15

Documentation

■ Documentation
is very important

– Using gjdoc we generate
XML, XHTML and info

– Many APIs have
reasonable docs

● There certainly
are exceptions

■ Ugently needed:

– High-level overview

– Manual for free
environments

16

Quality assurance

■ Test suite

– ~100,000+ tests

– We need many more!

■ Key to reliability

■ Tests are very
easy to write

■ What is the spec?

// Tags: JDK1.0
package gnu.testlet.java.util.Stack;

import java.util.Stack;
import gnu.testlet.*;

public class empty
 extends Testlet
{
 public void test(TestHarness h)
 {
 Stack stack = new Stack();

 // Check #1.
 h.check(stack.empty());

 // Check #2.
 stack.push(“abc”);
 h.check(!stack.empty());
 }
}

Test for java.util.Stack.empty()

http://sources.redhat.com/mauve/

17

Releases

■ Now: Version 0.09

■ Time-based release schedule

– Every two/three months,
a new 0.0x release

■ Already quite usable for real
applications

– “0.09” may be too modest a
name

■ For v1.0, we need:

– Fixed VM interface

– Complete implementation of
supported packages

● Define “supported”!

– Full test coverage

– Full documentation
of the API

● Start of a real manual?

18

Current state – GNU Classpath

■ GNU Classpath is comparable to J2SE 1.3/1.4 (Desktop)
– Build both according to spec/docs and around actual applications

– No formal compliance with any specification

java.beans[.beancontext], java.io, java.lang[.ref, .reflect], java.math,
java.net, java.nio.charset[.spi] (only SPI), java.rmi[.activation, .dgc,

.registry, .server], java.security[.acl, .cert, .interfaces, .spec], java.sql,
java.text, java.util[.jar, .logging, .zip]

 javax.naming[.directory, .ldap, .spi], javax.swing.[border, plaf],
javax.transaction[.xa]

■ J2SE 1.4 (Desktop), should work, might have bugs

19

Current state – GNU Classpath

■ J2SE 1.4 (Desktop), partially works

java.applet, java.awt, java.awt.event, java.awt.geom,
java.awt.image[.renderable], java.nio[.channels, .spi], java.util.prefs

javax.accessibility, javax.print[.*] (only SPI), javax.swing.undo

■ J2SE 1.4 (Desktop), lots of work needed/nothing there yet

java.awt.color, java.awt.font, java.awt.im[.spi],
java.nio.charset (service providers)

javax.imageio[.*], javax.print (service providers), javax.rmi[.CORBA],
java.security.auth[.*], javax.swing[.colorchooser, .event,

.filechooser, .plaf.basic, .plaf.metal, .plaf.multi, .table,
.text, .text.html, .text.html.parser, .text.rtf, .tree]

org.ietf.jgss, org.omg[.*]

20

Current state – Others

■ Various standard packages

– No formal compliance with any specification

javax.sound
Service providers for
ALSA, esd, lame, ogg

Tritonus Project

javax.crypto
Service providers for

many crypto algorithms

GNU Crypto

java.util.regex
GNU regex

javax.activation
javax.infobus

javax.mail
javax.servlet
GNU Classpath

Extensions

javax.speech
Text-to-Speech
(no recognition)

FreeTTS

javax.net
javax.net.ssl

javax.security.cert
SSL/TLS Support

Jessie

Integrated

21

Current state - “Enterprise”

■ J2EE 1.4 (Server)

– Multi-tier stack: web services/enterprise computing

– Multiple “free” implementations: JBoss.org, Jonas

– Needs some work to combine it all

– Conformance: Lots of politics

■ Service providers for interfaces in some of the earlier mentioned
packages:

javax.activation, javax.ejb[.spi], javax.enterprise[.*], javax.jms,
javax.mail[.*], javax.management[.*], javax.resource[.*],

javax.security.jacc, javax.servlet[.*], javax.transaction[.xa], javax.xml.*

22

Current state - Beyond the “standard”

■ Support for multiple other programming languages

– GNU KAWA: Scheme, Common Lisp, eLisp, ECMAScript, ...

– Jython, JRuby, Rhino (javascript)

■ Traditional free libraries with Java bindings

– GTK+, GNOME, glade, gconf, vte, ...

● Is part of the official language bindings
since GNOME 2.6

– GNU gettext, getopt, readline, ...

■ Lots of stuff on sourceforge.net and jakarta.apache.org

– “Open Source”, but often doesn't work or integrates with the Free
Software stack

23

Systems using Classpath: gcj

■ Java front-end to the GCC compiler

– Java C++≃

● GCC backend performs ± same optimizations as with other
languages (C, C++, Fortran, Ada, Pascal, Cobol, ...)

 fast execution→
● Static compilation produces stand-alone executables

– But Java is a dynamic language!
– → Run-time library contains a simple bytecode interpreter for

dynamically loaded classes

GNU Compiler for the Java Progr. Language
Free Software Foundation, Boston, USA

http://gcc.gnu.org/java/

24

Systems using Classpath: gcj

■ GCJ uses its own class library (“libjava”)

– Being merged with GNU Classpath

● Some parts are tricky to merge (optimizations)

– Non-standard interface for native code

● “Compiled Native Interface” = C++

● Support for standard JNI has been added,
but JNI is slower than CNI (and much more verbose)

GNU Compiler for the Java Progr. Language
Free Software Foundation, Boston, USA

http://gcc.gnu.org/java/

25

Systems using Classpath: IKVM.NET

■ JVM for .NET “platform”

– Java bytecodes “⇒ parse trees” CIL instructions⇒

– Uses run-time services of the CLI platform

● Synchronization, Garbage Collection, etc.

● But also optimization: Loaded CIL instructions
get optimized by platform compiler

Jeroen Frijters, Sumatra Software
Wassenaar, The Netherlands

http://www.ikvm.net/

IKVM.NET

26

Systems using Classpath: Kaffe

■ First free JVM

– Traditional VM: interpreter + JIT compiler

– Complete tool set: compiler, appletviewer, ...

– Ported to 56 platforms: “NetBSD of free Java”

– License: GPL

– Very active development, mostly the first
to adopt new libraries and extensions

Kaffe
http://www.kaffe.org/

27

VMs using Classpath: Others

Object Persistence

“Coffee for your Amiga”
AegisVM

Modular bytecode
verification

JamVM

Java Oberon SystemOperation System

Small, compact interpeter Interpreter research framework

Jikes RVM

28

Very different VMs

■ GNU Classpath is used by very diverse VMs

– Very different (sometimes conflicting) design goals

– Extremes: gcj Jaos, JNode OS IKVM.NET↔ ↔

● gcj: Java C++≃
● Jaos, JNode OS: Cannot support any C code, no POSIX

● IKVM.NET: Build to be integrated into .NET platform/libraries

29

Very different VMs

■ Diverse VMs delegation/façade pattern→

– Clear interface between Classpath and VM

– Plan: Common glibj.zip/.jar with all core classes

– VM should inline calls to pack.-local final methods

java.lang

. . .

1Class VMClass

Any VM-specific state and methods
Package local, final

Classpath provides non-optimized default
implementation

1 1Thread VMThread

1

All public methods

30

Red Hat & GNU Classpath/gcj

■ Red Hat hackers know the GNU way
– Project management, patches, coding style

■ Are friends with the FSF
– Almost no paperwork hassles

■ Really Free Software minded
– No tricks

■ AWT, Swing, gcj – Red Hat leads
– And RHUG, jhbuild-gcj, gcjx, ...

■ Individual Red Hat hackers are great!

31

Red Hat – The Company

■ “OSA”

“features such as an open source Java
infrastructure”

“deployments include different components
(clustering, Java, security, database, etc.)”

32

Red Hat - REA

■ Digging deeper into Red Hat “Open Source Java”
Red Hat Enterprise Applications

■ Would you recommend: Red Hat Developer Suite, Red Hat Portal
Server, Red Hat Content Management System?

– Eclipse, Jonas, ...

■ Absolutely NOT!

– Awkward, non-GPL compatible licenses

– Based on non-free frameworks

● Under “supported platforms” on your “open source java” page it
only lists proprietary runtimes and development frameworks!

– Unsupported (and disappearing!) technology previews

– Not integrated with the GNU System at all.

33

Demos: Eclipse, Tomcat

■ Eclipse IDE

– UI: SWT (not AWT)

– eclipse.org

■ Tomcat

– Container for Servlets
and JavaServer Pages

– jakarta.apache.org

34

35

Tomcat

36

The Future

■ This year GNU Classpath 1.0

– Will be the common “free java” core

– One glibj to rule them all

● If it compiles against GNU Classpath glibj, it should just work on
all free systems

– Done in steps

● 1.0, 1.1, 1.2 (no GUI), 1.2 (plus full AWT, no Swing), ...?

– So what is needed?

■ The real fun will be

– java-gnome, strong integration with freedesktop.org, GNU platform.

■ The “pain” will be

– Escaping the Java Trap

37

How you can help

■ Help is greatly appreciated

– Port and test free java programs
on free systems

– Write test cases for Mauve

– Write intellegible documentation

– Implement library classes

● “Standard”

● Integration
(gnu, gnome, freedesktop)

– Write new applications

– Fund development

■ How to proceed

– Look at the task list:
http://www.gnu.org/software/classpath/
Both easy and tricky tasks

– Ask us for details:
classpath@gnu.org

– Read Planet Classpath:
http://classpath.wildebeest.org/planet/

– Happy hacking!

