
1

Agile2D: implementing 
Graphics2D over OpenGL

Jean-Daniel Fekete
INRIA Futurs/LRI

http://www.lri.fr/~fekete

Implemented by
Jon Meyer, Ben Bederson and Jean-Daniel Fekete

for the University of Maryland

http://www.lri.fr/~fekete


2

Agile2D Goal

● Provide a Free, Fast and Portable 
implementation of Java Graphics2D
– OpenGL is available on more platforms than 

Java
● Windows, Linux, MacOS, IRIX, Solaris, BeOS
● Now on smaller platforms with OpenGL tiny[check]

● Target for Information Visualization 
applications

● Allow for convenient integration of Java 
Graphics2D and OpenGL

● New standard Java binding for OpenGL
– JOGL Free software, BSD licence
– Time to make it mainstream



3

Principles of OpenGL

● Intermediate API
– not low-level, not high-level

● Expose part of the hardware pipeline
● Provide abstractions to use it at full speed

– Sometimes 100x faster than software rendering
● Implementations vary from full software (e.g. 

with Mesa) or full hardware (SGI, 3DLabs, 
Nvidia, ATI)

● Still evolves, last version is 1.5 on its way to 
2.0



4

Sun vs. Agile2D Performances



5

Sun vs. Agile2D Performances 
LOG



6

Agile2D Implementation

● Relies on Java2D
– Path, Stroke, Shape, Font Renderer

● Three subsystems
– Shape rendering

● Tesselation and rendering attributes
– Image rendering

● Texture oriented
– Font rendering

● Texture oriented + cache
● Transforms and Clip managed by OpenGL
● Extensions: vertex arrays, OpenGL access
● Missing features: OpenGL based images+AA



7

AGLGraphics2D

● AGLGraphics delegate all methods to a 
GraphicsEngine
– Maintains a “current active AGLGraphics”

● AGLGraphics maintain a local state
– Paint, background Color, Composite, Stroke, 

Font, RenderingHints, AffineTransform, clipArea
– Install it when changing the active AGLGraphics

● Cloning a AGLGraphics is cheap
● Changing context can be expensive



8

Shape Rendering

● Java shapes are defined by general 2D 
outlines and an interior rule

● OpenGL can only fill convex polygons or 
simpler shapes: triangles and quadrilaterals

● Should decompose arbitraty polygons
– Tesselation, implemented by GLU
– Expensive, but could be improved
– Shapes can be cached if desired into a “display 

list”, stored into the OpenGL memory
● Bottlenecks: Tesselation, transmission
● Solution: cacheing



9

Shape Tesselation Cacheing

● Most Java shapes are immutable (not all)
● Use a IMMUTABLE_SHAPE_HINT to allow 

shape cacheing
– 1st time the shape is rendered, it goes through 

the tesselation process and is sent to OpenGL in 
a display list

– Next times, the display list is used
● No need to tesseslate, nor to send the results

● A WeakHashMap maintains the Shape to 
Display List association
– When the shape is garbage collected, the list is 

freed



10

Shape attributes

● Color in OpenGL is RGBA, like Java2D
● Transparency works directly (much faster)
● Gradient and textures are implemented using 

hardware acceleration (glTexGen)
– Gradient use 1D textures
– Textures use 2D textures
– Blazingly fast! 100x faster than Sun's impl.

● Pixel operators defined in OpenGL not 
implemented in Agile2D (but could)

● User-defined attributes not supported yet
– Could be using textures



11

Image Rendering

● 2 image pipelines in OpenGL
– Direct image rendering (no transform)
– Texture mapping

● Use direct rendering when possible
● Little problem with Java RGBA order
● Provides image cacheing just like shapes
● IMMUTABLE_IMAGE_HINT
● Textures are limited in size so tile them 

(512x512 or 1024x1024) when too big
● All images primitives are implemented



12

Font Rendering

● No font mechanisms in OpenGL
● 2 mechanisms

– Texture mapping for smaller sized
– Shapes for larger size

● Currently only Latin1 characters
● Small size = all glyphs fit in a 512x512 

texture
● Cache of textures
● Rendering done by Sun's Font Rendered



13

Missing features

● No OpenGL rendering in images
– 3 possible methods

● Offline GL buffers: slow
● Rendering in back buffer and copy: painful
● Pbuffers: not portable but fast, not implemented by 

gl2java but in JOGL
– Would complete the implementation
– VolatileImage could be done in one large Pbuffer

● Font management for non latin1 glyphs
– Use Unicode “blocks” (roughly language)
– Smaller blocks can use the same mechanism
– Large blocks should allocate glyphs dynamically

● Anti Aliasing: easy using multi-sampling
● User-defined Paint attributes ???



14

Extensions

● Vertex Arrays
– Send simple geometry and attributes directly to 

OpenGL
– Very fast: 15/30/45 million triangles per second, 

with color, texture indices, etc.
● Direct OpenGL rendering

– Method runGL(GLEventListener ev)
– Saved the context and restores in afterwards
– Heavyweight but preserves the OpenGL state for 

Agile2D



15

Agenda

● Find funding to port Agile2D to a full port 
using JOGL
– 1 person, 6 months

● Port JOGL to SWT and classpath
● Hard problems:

– Font rendering
– Implementation of Area (maybe using GLU 

tesselation)


	Agile2D: implementing Graphics2D over OpenGL
	Agile2D Goal
	Principles of OpenGL
	Sun vs. Agile2D Performances
	Sun vs. Agile2D Performances LOG
	Agile2D Implementation
	AGLGraphics2D
	Shape Rendering
	Shape Tesselation Cacheing
	Shape attributes
	Image Rendering
	Font Rendering
	Missing features
	Extensions
	Agenda

