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Agile2D Goal

● Provide a Free, Fast and Portable 
implementation of Java Graphics2D
– OpenGL is available on more platforms than 

Java
● Windows, Linux, MacOS, IRIX, Solaris, BeOS
● Now on smaller platforms with OpenGL tiny[check]

● Target for Information Visualization 
applications

● Allow for convenient integration of Java 
Graphics2D and OpenGL

● New standard Java binding for OpenGL
– JOGL Free software, BSD licence
– Time to make it mainstream
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Principles of OpenGL

● Intermediate API
– not low-level, not high-level

● Expose part of the hardware pipeline
● Provide abstractions to use it at full speed

– Sometimes 100x faster than software rendering
● Implementations vary from full software (e.g. 

with Mesa) or full hardware (SGI, 3DLabs, 
Nvidia, ATI)

● Still evolves, last version is 1.5 on its way to 
2.0
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Sun vs. Agile2D Performances
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Sun vs. Agile2D Performances 
LOG
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Agile2D Implementation

● Relies on Java2D
– Path, Stroke, Shape, Font Renderer

● Three subsystems
– Shape rendering

● Tesselation and rendering attributes
– Image rendering

● Texture oriented
– Font rendering

● Texture oriented + cache
● Transforms and Clip managed by OpenGL
● Extensions: vertex arrays, OpenGL access
● Missing features: OpenGL based images+AA
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AGLGraphics2D

● AGLGraphics delegate all methods to a 
GraphicsEngine
– Maintains a “current active AGLGraphics”

● AGLGraphics maintain a local state
– Paint, background Color, Composite, Stroke, 

Font, RenderingHints, AffineTransform, clipArea
– Install it when changing the active AGLGraphics

● Cloning a AGLGraphics is cheap
● Changing context can be expensive
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Shape Rendering

● Java shapes are defined by general 2D 
outlines and an interior rule

● OpenGL can only fill convex polygons or 
simpler shapes: triangles and quadrilaterals

● Should decompose arbitraty polygons
– Tesselation, implemented by GLU
– Expensive, but could be improved
– Shapes can be cached if desired into a “display 

list”, stored into the OpenGL memory
● Bottlenecks: Tesselation, transmission
● Solution: cacheing
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Shape Tesselation Cacheing

● Most Java shapes are immutable (not all)
● Use a IMMUTABLE_SHAPE_HINT to allow 

shape cacheing
– 1st time the shape is rendered, it goes through 

the tesselation process and is sent to OpenGL in 
a display list

– Next times, the display list is used
● No need to tesseslate, nor to send the results

● A WeakHashMap maintains the Shape to 
Display List association
– When the shape is garbage collected, the list is 

freed
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Shape attributes

● Color in OpenGL is RGBA, like Java2D
● Transparency works directly (much faster)
● Gradient and textures are implemented using 

hardware acceleration (glTexGen)
– Gradient use 1D textures
– Textures use 2D textures
– Blazingly fast! 100x faster than Sun's impl.

● Pixel operators defined in OpenGL not 
implemented in Agile2D (but could)

● User-defined attributes not supported yet
– Could be using textures
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Image Rendering

● 2 image pipelines in OpenGL
– Direct image rendering (no transform)
– Texture mapping

● Use direct rendering when possible
● Little problem with Java RGBA order
● Provides image cacheing just like shapes
● IMMUTABLE_IMAGE_HINT
● Textures are limited in size so tile them 

(512x512 or 1024x1024) when too big
● All images primitives are implemented
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Font Rendering

● No font mechanisms in OpenGL
● 2 mechanisms

– Texture mapping for smaller sized
– Shapes for larger size

● Currently only Latin1 characters
● Small size = all glyphs fit in a 512x512 

texture
● Cache of textures
● Rendering done by Sun's Font Rendered



13

Missing features

● No OpenGL rendering in images
– 3 possible methods

● Offline GL buffers: slow
● Rendering in back buffer and copy: painful
● Pbuffers: not portable but fast, not implemented by 

gl2java but in JOGL
– Would complete the implementation
– VolatileImage could be done in one large Pbuffer

● Font management for non latin1 glyphs
– Use Unicode “blocks” (roughly language)
– Smaller blocks can use the same mechanism
– Large blocks should allocate glyphs dynamically

● Anti Aliasing: easy using multi-sampling
● User-defined Paint attributes ???
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Extensions

● Vertex Arrays
– Send simple geometry and attributes directly to 

OpenGL
– Very fast: 15/30/45 million triangles per second, 

with color, texture indices, etc.
● Direct OpenGL rendering

– Method runGL(GLEventListener ev)
– Saved the context and restores in afterwards
– Heavyweight but preserves the OpenGL state for 

Agile2D
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Agenda

● Find funding to port Agile2D to a full port 
using JOGL
– 1 person, 6 months

● Port JOGL to SWT and classpath
● Hard problems:

– Font rendering
– Implementation of Area (maybe using GLU 

tesselation)
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